Microprocessor Instructions &
Communication

Microprocessor Instructions &
Communication

Instruction Set ,Mnemonics
Basic Instruction Types
Addressing modes

Microprocessor I/O connecting 1/O put to
Microprocessor

Polling and Interrupts
Interrupt and DM Controllers.

Microprocessor Instruction Set
Classification

e Transfer
— Move

e Arithmetic
— Add / Subtract
— Mul / Div, etc.
e Control
— Jump
— Call / Return, etc.

Data transfer : Move

* MOV Dest, Src

— MOV reg, reg reg <- reg
— MOV reg, mem reg <- mem
— MOV mem, reg mem <- reg
— MOV reg, Imm reg <- 1mm
— MOV mem, 1mm mem <- 1mm

e There is no move mem<-mem instruction.

Move limitation

e Both operand must be in the same size.

 There is no instruction to put immediate value
directly to segment register. Have to use
accumulator (AX) to accomplish this.

e To put immediate value directly to memory,
we have to specify its size. (Byte/Word PTR)

MOV
MOV
MOV

MOV
MOV
MOV
MOV

Move (vov) Example

AX,100h
BX,AX
DX,BX

AX,1234h
DX, 5678h
AL ,DL
BH, DH

MOV
MOV
MOV

MOV
MOV

MOV
MOV

MOV Example

AX,1000h
[100h], AX
BX, [100h]

BYTE PTR [200h],10h
WORD PTR [300h],10h

AX,2300h
DS, AX

MOV

MOV

MOV

MOV

MOV : 16 / 8 Bit register

AX,1000h
‘ AX AH AL
1000h 10h 00h
AL, 3Ah
‘ AX AH AL
103Ah 10h 3Ah
AH, AL
‘ AX AH AL
3A3AhN 3Ah 3Ah
AX,234h
‘ AX AH AL

234h

02h

34h

e To move value
between registers,
their size must be
the same.

MOV : Memory

MOV AX,6789h DS:100h
MOV DX,1234h DS:101h
MOV [100h],AX DE8:102h
MOV [102h],DX
MOV [104h],AH
MOV [105h],DL
MOV BX, [104h]
MOV CX, [103h]
MOV [106h],CL

* Given only offset where to put value, it will be
automatically select DS as the segment register.

Byte ordering : Little endian

e Since, x86’s byte
ordering is little
endian.

e Therefore, the LSB will
be placed at lowest
address and MSB wiill
be placed at highest
address.

MOV [100h],2AX

67 | 89

MOV [102h],DX

89h

12 |34 [1—
[N

MOV [104h],AH
67

67h

34h

12h

DS:100h
DS:101h

DsS:102h

67h

34h

MOV [105h], DL

34

MOV BX, [104h] |34] 67

Displacement

e We can use BX (Base)
register to point a place
of memory.

 Both register direct or
displacement.

/

BX

AX

04

02h

y

O01h

04h

01h

00h

O01h

MOV
MOV
MOV
MOV
MOV
MOV

DS:100h
DS:101h

DS:102h

AX,102h
BX,100h
CX,4004h
DX,1201h
[BX] , AX
[BX+2] ,CX
[BX+3],DX
[BX+4] ,BX
BX, [102h]
AX, [BX]

What is the result of ...

MOV [100h], 10h
Address 100 = 10h
What about address 1017

Word or Byte?
— MOV WORD PTR [100h], 10h
— MOV BYTE PTR [100h], 10h

What about MOV [100h], AX ?

Flag

e 8086 has 16 bit flag to indicate the status of final
arithmetic result.

19 14 13 12 11 10 9 & 7 6 &4 4 3 2 1 0
“T-T-T-Tolp 1T]s]z]-T-TAa]P]-]cC

_

Carry
Parity
Auxiliary
Zero

Sign

Trap
Interrupt
Direction
Overflow

Zero Flag

 The zero flag will be set (1) whenever the result is
Zero.

- X

MOV AL, 10h

2="7
ADD AL,EOh Z=1 AL=0
ADD AL, 20h Z2=0 AL=20h
SUB AL,10h Z2=0 AL=10h
SUB AL,10h Z=1 AL=0

Parity flag

 The parity flag will be set whenever the number of
bit “1” are even.

X
MOV AL, 14h P=?
ADD AL,20h P=0 AL-34h
ADD AL, 10h P=1 Al=44h
SUB AL, 8h P=1 AL=3Ch
SUB AL, 10h P=0 AL-2Ch

Carry flag

e Carry flag will be set whenever there is a carry or
borrow (only with unsigned operation).

- X
MOV AL, 77h C=?
ADD AL,50h c=0 AL=C7h
ADD AL,50h C=1 AL=17h
SUB AL,AOh c=1 AL-=77h
ADD AL,27h c=0 AL-9Eh

Overflow flag

 Overflow flag will be set whenever the result is
overflow (with signed operation).

- X
MOV AL, 77h 0=?
ADD AL,50h 0=1 AL-C7h
ADD AL,50h 0=0 AL=17h
SUB AL,AOh 0=0 AL-77h
ADD AL,27h 0=1 AL-9Eh

Sign flag

e Sign flag will be set whenever the result is negative
with signed operation.

X
MOV AL, 77h S=?
ADD AL,50h S=1 AL=C7h
ADD AL,50h s=0 AL-=17h
SUB AL,AOh s=0 AL-=77h
ADD AL,27h s=1 AL-9Eh

More flag

Auxiliary flag will be set when the result of BCD
operation need to be adjusted.

Direction flag is used to specify direction
(increment/decrement index register) in string
operation.

Trap flag is used to interrupt CPU after each
operation.

Interrupt flag is used to enable/disable hardware
interrupt.

Flag set/reset instructions

e Carry flag STC / CLC
e Direction flag STD / CLD

e |Interrupt flag STl / CLI

Increment - Decrement

 INC/DEC

— INC register DEC register
— INC memory DEC memory

* EX.
— INC AX
— DECBL

— How can we increment a byte of memory?
e INC ??? [100]

Add

ADD reg, imm ADC reg, imm

ADD reg, mem ADC reg, mem
ADD reg, reg ADC reg, reg
ADD mem, imm ADC mem, imm

ADD mem, reg ADC mem, reg

MOV
ADD
MOV
MOV
ADD
MOV
ADD
ADC

EX. ADD

AL, 10h
AL, 20h ;AL = 30h
BX, 200h ;BX = 0200h

WORD PTR [BX], 10h

WORD PTR [BX], 70h

AH, 89h -AX = 8930h
AX, 9876h -AX = 21A6h
BX, 01h -BX = 0202h ?

Subtract

SUB reg, imm SBB reg, imm

SUB reg, mem SBB reg, mem

SUB reg, reg SBB reg, reg
SUB mem, imm SBB mem, imm

SUB mem, reg SBB mem, reg

MOV
ADD
MOV
MOV
SUB
MOV
SBB
SBB

Ex. SUB

AL, 10h
AL, 20h
BX, 200h

AL =
-BX =

WORD PTR [BX], 10h
WORD PTR [BX], 70h

AH, 89h
AX, 0001h
AX, 0001h

-AX
-AX
-AX

30h
0200h

8930h
892Eh ?
892Dh

Compare

CMP reg, imm
CMP reg, mem
CMP reg, reg

CMP mem, reg

There is no “CMP mem, imm”

MOV CX,
CMP CX,
MOV BX,
CMP BX,
MOV AX,
CMP AX,

10h
20h
40h
40h
30h
20h

Ex. CMP

;Z2=0,5=1,C=1,0=0

;Z=1,5=0,C=0,0=0

;Z=0,5=0,C=0,0=0

Negation

e Compute 2’complement.
e Carry flag always set.

e Usage
— NEG reg
— NEG mem

Ex. NEG

MOV CX, 10h

NEG CX ; CX = OFFFOh
MOV AX, OrFFFH

NEG AX ; AX
MOV BX, 1H

NEG BX ; BX = OFFFFh

[
=

Multiplication

IMUL (Integer multiplication) unsigned
multiplication

MUL (Multiplication) signed multiplication.
— MUL reg IMUL reg
— MUL mem IMUL mem

Always perform with accumulator.
Effected flag are only over and carry flag.

8 bit multiplication

AL is multiplicand
AX keep the result

MOV AL,10h
MOV CL,13h
IMUL CL

AL =10h
:CL=13h
: AX =0130h

16 bit multiplication

AX is multiplicand
DX:AX keep the result

MOV AX,0100h ; AX=0100h
MOV BX,1234h ; BX =1234h
IMUL BX ; DX=0012h

; AX = 3400h

Division

IDIV (Integer division) unsigned division.
DIV (Division) signed division.

— DIV reg IDIV reg

— DIV mem IDIV mem

Always perform with accumulator.
Effected flag are only over and carry flag.

>

8 bit division

_is dividend

_ keep the result

H keep the remainder

MOV AX, 0017h
MOV BX, 0010h
DIV BL ; AX=0701

16 bit multiplication

DX:AX dividend.
AX keep the result, DX keep the remainder.

MOV AX,4022n ;
MOV DX,0000n ;
MOV CX,1000hn ;
DIV CX ;AX =0004
;DX =0022

Conversion

e Byte to Word : CBW
— Signed convert AL -> AX

e Word to Double word : CWD
— Signed convert AX -> DX:AX

Ex. Conversion

MOV AL, 22h

CBW ; AX=0022h
MOV AL, FOh

CBW ; AX=FFFOh
MOV AX, 3422h

CWD ; DX=0000h

AX=3422h

Flag affected

Instruction Z-flag | C-tflag | S-flag | O-flag | A-flag
ADD ves ves ves ves ves
ADC ves ves ves ves ves
SUB ves ves ves ves ves
SEB ves ves Ves ves ves
ITNC ves o ves Ves ves
DEC ves no ves ves ves
NEG ves ves Ves ves ves
CMP ves ves ves ves ves
MUL 1o ves Ho ves Ho
IMUL le ves 1o ves HO
DIV no 1o 1o ale, no
IDIV HO Ho HO ile; Ho
CEW Ho 1o 1o no no
CWD no 1o 1o ale, no

Example about flag with arithmetic

[nstruction Z-tlag C-flag O-tlag S-flag P-flag | WINBLTE

MOV AX,7100h ? ? ? ? ?

MOV BX,4000h ? ? ? ? ?

ADD AX,BX 0 0 1 1 1 AX=0B100h

ADD AX,7700h 0 1 0 0 1 AX=2800h

SUB AX,2000h 0 0 0 0 0 AX=0800h

SUB AX,1000h 0 1 0 1 0 AX=F800h

ADD AX,0800h 1 1 0 0 1 AX=0000h
* LAARITANAY

LA RLANUR UMINNVLNBHATAENT, 1994

— wng1sdsgnaunissauizin 204221 avAadsgnaumaunitaasasn1eEn

Example about flag with arithmetic

[nstruction Z-tlag C-tlag O-tlag S-tlag P-tlag HUEIH
MOV AL,10 ? ? ? ? ?

ADD AL,F0Oh 0 0 0 1 1 AL=0FAh
ADD AL, 6 1 1 0 0 1 AL=0
SUB AL,5 0 1 0 1 0 AL=0FEh
INC AL 0 1 0 1 1 AL=0FCh
ADD AL,10 0 1 0 0 1 AL=6h
ADD AL, FEh 0 1 0 0 0 AL=1h
DEC AL 1 1 0 0 1 AL=0h
DEC AL 0 1 0 1 1 AL=0FFh
INC AL 1 1 0 0 1 AL=0
Instruction Z-flag C-tlag O-tlag S-tlag P-tlag HUaLa

MOV AL,120 ? ? ? ? ?

ADD AL,15 0 0 1 1 1 AL=87h=-121
NEG AL 0 1 0 0 0 AL=75h

SUB AL,130 0 1 1 1 0 AL=0F7h

NEG -> Carry flag always 1, INC/DEC does not effect any flag

Jump and Loops

e Control structures
— Selection
— Repetition / Loop

e Jxx Label

cmp
]z
mov

labl: add

tenup:

endif:

cmp
jge
add
Jjmp

add

If ah=10,

ah,10
labl
bx, 2
cx,10

ah,10
tenup
dlL, "0’
endif

dl, A’

if ah>=10

lFeumen ah nu 10
¥ o1 oa B “ W et
-onunmuhing: lanlidnlabl

lseumeu ah du 10
S PRI 0 IS SR N
connnnamionnny hinaz laalilntenup

oy A .
‘13z laa lh endif

Get ‘Q’" and Print ASCII code.

getonechar:
mov ah,1 AFuSnisnmioa 1 oonus
int 21h
cmp al,'Q’ ~lsaumeual nu ' Q°
jne getonechar :ivhimiwulinizlaaliigetonechar (naulilsuaanysIn)
mov ah, 02 : 'J_II:;T]'II’;'HJJ'IE_Il'H'U 2 WU ONYTE
mov dl, 32 TN WOINGASCH=32(")
printloop:
cmp dl,128 culFouriion dL Wy 128 (ASCI aaiie)
ja finish dunndmszlaalili£inish
int 21h cWuonuszini ASCIT = dl
inc dl cy dl

jmp printloop
finish:

Loop

e Base on CX (Counter register) to count the
loop.

e |nstructions :

— LOOP :DecCX...0

— LOOPZ :CX<>0 and Z=1

— LOOPNZ :CX<>0 and Z=0

— JCXZ ; Jump if CX=0, used with

LOOP to determine the CX before loop.

LOOP

3 3

mov cx, 20 111 20 ASY

mov bl,1 TN 1

mov dx, 0 nmuaniGuaslinura
addonenumber:

add dl,bl S9N & Unau

adc dh, 0 -5 IUAINA

inc bl -@ana

3 . L L o : L.
loop addonenumber L0 1CX aaaduad biiominu o igae 1

JCXZ

initialization

joxz endloop COX =07
labell:

actions

loop labell - loop

endloop:

Example finding first character

cmp byte ptr [bx]," ' S WATI0NHIALT

Nz found congsansn lildoaing

mov cx,100 SN 100 7154
findnotspace: ,

inc bx BX ¥ lldadnusanaly

cmp byte ptr [bx],” ' :alsouheu

loopz findnotspace Shgmamugesianaz i bins udeya

nz found AU ONEIA WL

; not found - GOATIUHLAYTD 471
found:

; found S MUDNHIA MG

Addressing Modes

mmediate
Direct

ndirect

Register
Register Indirect

Displacement (Indexed)
Stack

Immediate Addressing

Operand is part of instruction
Operand = address field
e.g. ADD 5

— Add 5 to contents of accumulator
— 5is operand

No memory reference to fetch data
Fast

Limited range

Immediate Addressing Diagram

Instruction

Opcode Operand

Direct Addressing

Address field contains address of operand
Effective address (EA) = address field (A)

e.g. ADD A

— Add contents of cell A to accumulator
— Look in memory at address A for operand

Single memory reference to access data

No additional calculations to work out effective
address

Limited address space

Direct Addressing Diagram

Instruction

Opcode Address A

Memory

Operand

Indirect Addressing (1)

e Memory cell pointed to by address field
contains the address of (pointer to) the
operand

e EA=(A)

— Look in A, find address (A) and look there for
operand

e e.g. ADD (A)

— Add contents of cell pointed to by contents of A to
accumulator

Indirect Addressing (2)

Large address space
2" where n = word length

May be nested, multilevel, cascaded
—e.g. EA=(((A)))

e Draw the diagram yourself

Multiple memory accesses to find operand
Hence slower

Indirect Addressing Diagram

Instruction

Opcode Address A

Memory

» Pointer to operand

Operand

Register Addressing (1)

Operand is held in register named in address
filed

EA=R
Limited number of registers

Very small address field needed
— Shorter instructions
— Faster instruction fetch

Register Addressing (2)

No memory access
Very fast execution
Very limited address space

Multiple registers helps performance

— Requires good assembly programming or compiler
writing

— N.B. C programming

* registerint a;

c.f. Direct addressing

Register Addressing Diagram

Instruction

Opcode Register Address R

Registers

Operand

Register Indirect Addressing

C.f. indirect addressing
EA = (R)

Operand is in memory cell pointed to by
contents of register R

Large address space (2")

One fewer memory access than indirect
addressing

Register Indirect Addressing Diagram

Instruction

Opcode

Register Address R

Registers

\ 4

Pointer to Operand

Memory

Operand

Displacement Addressing

e EA=A+(R)
e Address field hold two values
— A = base value

— R =register that holds displacement
— Or vice versa

Displacement Addressing Diagram

Instruction
Opcode |Register R Address A
Memory
Registers
» Pointer to Operand <+ > . Operand

Relative Addressing

A version of displacement addressing
R = Program counter, PC
EA=A+ (PC)

i.e. get operand from A cells from current
location pointed to by PC

c.f locality of reference & cache usage

Base-Register Addressing

A holds displacement

R holds pointer to base address
R may be explicit or implicit
e.g. segment registers in 80x86

Indexed Addressing

A = base

R = displacement
EA=A+R

Good for accessing arrays

—EA=A+R
— R++

Combinations

Postindex
EA = (A) + (R)

Preindex
EA = (A+(R))

(Draw the diagrams)

Stack Addressing

 Operand is (implicitly) on top of stack
° e.g.

— ADD Pop top two items from stack
and add

x86 Addressing Modes

e Virtual or effective address is offset into segment
— Starting address plus offset gives linear address
— This goes through page translation if paging enabled

e 12 addressing modes available
— Immediate
— Register operand
— Displacement
— Base
— Base with displacement
— Scaled index with displacement
— Base with index and displacement
— Base scaled index with displacement
— Relative

x86 Addressing Mode Calculation

Base RegistEII

Index Register

Segment Registers
SS
GS
FS
ES Selector
DS Selector
— CS

Descriptor Registers

AG

B Access Fz:ightg:E

ocale
1,2, 4, 0r8

+ Displacement
(in instruction;
0, 8. or 32 bits)

Effective
Address

Linear
Address

- Limit

Base Addres

=r

L

Limit ——

Segment
Base
Address

ARM Addressing Modes
Load/Store

Only instructions that reference memory
Indirectly through base register plus offset

Offset

— O&‘Eet added to or subtracted from base register contents to form the memory
address

Preindex

— Memory address is formed as for offset addressing

— Memory address also written back to base register

— So base register value incremented or decremented by offset value
Postindex

— Memory address is base register value

— Offset added or subtracted
Result written back to base register

Base register acts as index register for preindex and postindex addressing
Offset either immediate value in instruction or another register

If register scaled register addressing available
— Offset register value scaled by shift operator
— Instruction specifies shift size

STRE r0. [rl. #12]

Offset
0z — 0x20C

r
0x200 0x200

Original
base register

(a) Offset

STRB 0, [rl, #1Z2]!

r
Updated Offset
base register | 0220C [«—— 0xC ——» 0x20C

I
0x200 0x200

Original
base register

(b) Preindex
STRBw r0, [rl]. #12
I
Updated Offset
base register | 0220C [&—— 0zC D200
r 3
I
Original _
base register 0x200 » 0x200

(c) Postindex

D5
ro
D=5
D5 0
0z5
ro
0z5

Ox5

Destination
register
for STR

Destination
register
for STR

Destinationt
register
for STR

ARM Data Processing Instruction Addressing
& Branch Instructions

 Data Processing

— Register addressing

e Value in register operands may be scaled using a shift
operator

— Or mixture of register and immediate addressing

e Branch
— Immediate

— Instruction contains 24 bit value
— Shifted 2 bits left

e On word boundary
 Effective range +/-32MB from PC.

ARM Load/Store Multiple Addressing

Load/store subset of general-purpose registers
16-bit instruction field specifies list of registers
Sequential range of memory addresses

Increment after, increment before, decrement
after, and decrement before

Base register specifies main memory address

Incrementing or decrementing starts before or
after first memory access

LDMzx rl0, {r0, rl, r4}
oIMzx rll, {r0, rl, r4}

Base register

ARM Load/Store Multiple Addressing Diagram

r10

0x20C

Increment

after (1A)

Increment
before (IB)

(r4)

(rd)

Decrement
after (DA)

(rl)

(rl)

Decrement
before (DB)

(r0)

(r0)

(r4)

(rl)

(r0)

0x218
0x214
0x210

0x20C
0x208

0x204
0x200

Instruction Formats

Layout of bits in an instruction
ncludes opcode
ncludes (implicit or explicit) operand(s)

Usually more than one instruction format in
an instruction set

Instruction Length

e Affected by and affects:
— Memory size
— Memory organization
— Bus structure

— CPU complexity
— CPU speed

 Trade off between powerful instruction
repertoire and saving space

Allocation of Bits

Number of addressing modes
Number of operands

Register versus memory
Number of register sets
Address range

Address granularity

X86 Instruction Format

Dorl Oorl forl Dorl hytes
Instruction| Segment {]pa:mnd Adt.iress
fix override S SEEE
pre override | overrile
1.11.
0123 o0rd h}'tes“, lor2 Dorl Dorl 0.1.2.ord 01,2 ord
Instruction prefixes Opcode ModR/M SIB Displacement Immediate
- - “‘ %
- - ” : I‘ 1i
- = [] * L]
- =" i “ l-‘
Mol Reg/Opcode R'M Scale Index Base

Symbolic Addresses

First field (address) now symbolic
Memory references in third field now symbolic

Now have assembly language and need an
assembler to translate

Assembler used for some systems
programming

— Compliers

— /0 routines

Symbolic Program

Address Instruction
101 LDA 201
102 ADD 202
103 ADD 203
104 STA 204
201 DAT 2
202 DAT 3
203 DAT 4
204 DAT 0

Assembler Program

Label Operation Operand
FORMUL LDA I
ADD J
ADD K
STA N
I DATA 2
J DATA 3
K DATA 4
N DATA 0

Interrupts

- An interrupt 15 an event that occurs while the processor is executing a program

- The interrupt temporarily suspends execution of the program and switch the
processor to executing a special routine (intermupt service routine)

- When the execution of interrupt service routine 15 complete, the processor
resumes the execution of the original program

d Interrupt classification

Hardware Interrupts

Software Interrupts

— Caused by activating the processor’s
interrupt control signals (WML
INTE,)

— Caused by the execution of an INT
instruction

— Cavsed by an event which is

generated

by the execution of a program. such
as division by zero

- 8088 can have 256 intermpts

Input/Output Organization

Introduction
Accessing |I/O devices

An example I/O device
— Keyboard

|/O data transfer
— Programmed I/O
— DMA

Error detection and
correction

— Parity encoding

— Error correction

— CRC

Outline

External interface
— Serial transmission
— Parallel interface

USB

— Motivation

— USB architecture
— USB transactions

IEEE 1394

— Advantages
— Transactions
— Bus arbitration
— Configuration

Introduction

e |/O devices serve two main purposes
— To communicate with outside world
— To store data
* |/O controller acts as an interface between the
systems bus and /O device
— Relieves the processor of low-level details
— Takes care of electrical interface

e |/O controllers have three types of registers
— Data

— Command
— Status

System bus

Introduction (cont’d)

Address bus

Data bus

Control bus

Introduction (cont’d)

* To communicate with an I/O device, we need

— Access to various registers (data, status,...)

e This access depends on I/O mapping
— Two basic ways
» Memory-mapped I/O
» |solated 1/0O

— A protocol to communicate (to send data, ...)

 Three types
— Programmed 1/0O
— Direct memory access (DMA)
— Interrupt-driven I/O

Accessing |/O Devices

e |/O address mapping
— Memory-mapped I/O

e Reading and writing are similar to memory read/write
e Uses same memory read and write signals
e Most processors use this I/0 mapping

— |solated 1/O

e Separate |/O address space
e Separate |/O read and write signals are needed

e Pentium supports isolated I/O
— 64 KB address space
» Can be any combination of 8-, 16- and 32-bit I/O ports
— Also supports memory-mapped I/O

Accessing |/O Devices (cont’d)

e Accessing /O ports in Pentium

— Register I/O instructions

in accumulator, port8 ;directformat
— Useful to access first 256 ports

iIn accumulator ,DX :indirect format
— DX gives the port address
— Block 1I/O instructions

e INS and outs
— Both take no operands---as in string instructions

e INS: port address in DX, memory address in ES:(E)DI
e oUts: port address in DX, memory address in ES:(E)SI
e We can use rep prefix for block transfer of data

An Example 1/0O Device

e Keyboard

— Keyboard controller scans and reports
— Key depressions and releases
e Supplies key identity as a scan code
— Scan code is like a sequence number of the key

» Key’s scan code depends on its position on the keyboard
» No relation to the ASCII value of the key

— Interfaced through an 8-bit parallel I/O port

e Originally supported by 8255 programmable peripheral
interface chip (PPI)

An Example /O Device (cont’d)

e 8255 PPl has three 8-bit registers
e Port A (PA)
e Port B (PB)
e Port C (PC)

— These ports are mappead as follows
8255register fortaddress—
PA (input port) 60H
PB (output port) 61H
PC (input port) 62H

Command register 63H

An Example /O Device (cont’d)
Vopping of 8255 /Oports

From
address
bus

From IORD
control |
bus
Al15 — A8
A’
A6 —
A5 —
A2 — A4
Al

A0

5l &l

CS

0

Al
A0

8255 PPI

<

,8 To
/ data
/
DO — D7 bus

An Example /O Device (cont’d)

 Mapping I/O ports is similar to mapping memory
— Partial mapping
— Full mapping

e See our discussion in Chapter 16

e Keyboard scan code and status can be read from
port 60H

— 7-bit scan code is available from
e PAO — PA6

— Key status is available from PA7
e PA7 =0 - key depressed
e PAO =1 — key released

|/O Data Transfer

e Data transfer involves two phases

— A data transfer phase

e |t can be done either by
— Programmed I/O
— DMA

— An end-notification phase
 Programmed I/O
* Interrupt

 Three basic techniques

— Programmed 1/0O
— DMA
— Interrupt-driven |/O (discussed in Chapter 20)

|/O Data Transfer (cont’d)

 Programmed I/O
— Done by busy-waiting
e This process is called polling

e Example

— Reading a key from the keyboard involves

e Waiting for PA7 bit to go low
— Indicates that a key is pressed

e Reading the key scan code
e Translating it to the ASCII value
e Waiting until the key is released

— Program 19.1 uses this process to read input from the
keyboard

|/O Data Transfer (cont’d)

e Direct memory access (DMA)

— Problems with programmed 1/0

* Processor wastes time polling
— In our example
» Waiting for a key to be pressed,
» Waiting for it to be released

 May not satisfy timing constraints associated with some
devices

— Disk read or write

— DMA

* Frees the processor of the data transfer responsibility

|/O Data Transfer (cont’d)

/TN
T1 A 0
\ /

Memory I/0 Memory I/0

CPU DMA controller

{1

<

(a) Programmed 1/O transfer (b) DMA transfer

|/O Data Transfer (cont’d)

e DMA is implemented using a DMA controller
— DMA controller

* Acts as slave to processor
e Receives instructions from processor

e Example: Reading from an |/O device
— Processor gives details to the DMA controller
» |/O device number
» Main memory buffer address
» Number of bytes to transfer

» Direction of transfer (memory — 1/O device, or vice versa)

|/O Data Transfer (cont’d)

e Stepsina DMA operation

— Processor initiates the DMA controller
e Gives device number, memory buffer pointer, ...
— Called channel initialization
e Once initialized, it is ready for data transfer

— When ready, I/O device informs the DMA controller

e DMA controller starts the data transfer process
— Obtains bus by going through bus arbitration
— Places memory address and appropriate control signals
— Completes transfer and releases the bus
— Updates memory address and count value
— If more to read, loops back to repeat the process

— Notify the processor when done
e Typically uses an interrupt

|/O Data Transfer (cont’d)

DV coneler el imermupe | IREQ
controller
INTR DREQ
| —
DACK
HOLD
DMA IORD 1/0
HLDA controller G =
== IOWR controller
CPU
EOP
e
N

MEMRD

MEMWR Memory <:—
> Data bus

Address bus

DREQ

MEMWR

|/O Data Transfer (cont’d)

P .

/

/

N

N
&

AN 2
&

N

CLE e
RIWis

|/O Data Transfer (cont’d)

DMA request 0

e

DMA request 1
DMA request 2

DMA request 3

Hold ack

Clock

Reset

Ready

Chip select

DREQO
DREQI
DREQ2
DREQ3

HLDA

CLK

RESET
READY

DB0 — DB7

8237 DMA Controller

A0 — A3

A4 — A7
ADSTB

HOLD

DACKO
DACK1
DACK2
DACK3

IORD
IOWR
MEMRD
MEMWR

EOP

<::> To data bus

C——
N To address bus

> Address strobe

Hold request

DMA ack 0
DMA ack 1

DMA ack 2
DMA ack 3

<——= [/Oread

I/O write

Memory read

Memory write

End of process

|/O Data Transfer (cont’d)

e 8237 supports four DMA channels

* |t has the following internal registers

— Current address register

 One 16-bit register for each channel

* Holds address for the current DMA transfer
— Current word register

e Keeps the byte count

e Generates terminal count (TC) signal when the count goes
from zero to FFFFH

— Command register
e Used to program 8257 (type of priority, ...)

|/O Data Transfer (cont’d)

— Mode register

e Each channel can be programmed to
— Read or write
— Autoincrement or autodecrement the address
— Autoinitialize the channel

— Request register
e For software-initiated DMA

— Mask register
e Used to disable a specific channel

— Status register

— Temporary register
e Used for memory-to-memory transfers

|/O Data Transfer (cont’d)

e 8237 supports four types of data transfer

— Single cycle transfer
e Only single transfer takes place
e Useful for slow devices

— Block transfer mode

* Transfers data until TC is generated or external EOP signal is
received

— Demand transfer mode
e Similar to the block transfer mode

* |In addition to TC and EOP, transfer can be terminated by
deactivating DREQ signal

— Cascade mode
e Useful to expand the number channels beyond four

External Interface

e Two ways of interfacing /0 devices

— Serial Data
transmission
e Cheaper
e Slower
— Parallel Parallel Serial
e Faster
e Data skew
Asynchronous

Limited to small distances

Synchronous

Parallel-to-serial

External Interface (cont’d)

Serial-to-parallel

conversion conversion
/ N\ /~\
1 1
1 |
0 0
0 10010011 0 .
Sender | | Receiver
0 0
0 0
1 1

(a) Serial transmission

Sender

—_—0 O O D k=

(b) Parallel transmission

Receiver

—_O D = D D e =

External Interface (cont’d)

e Serial transmission

— Asynchronous
e Each byte is encoded for transmission
— Start and stop bits
* No need for sender and receiver synchronization

— Synchronous
e Sender and receiver must synchronize
— Done in hardware using phase locked loops (PLLs)
e Block of data can be sent

 More efficient
— Less overhead than asynchronous transmission

* Expensive

External Interface (cont’d)

Sender

Transmission gaps

i

l | |_| Data I | |—| Data I | |_| Data

Sender

(a) Asynchronous transmission

Receiver

Data | Data | Data | Data | Data

(b) Synchronous transmission

Receiver

External Interface (cont’d)

toart I 1 1.5 o

bit Source data stop bits
N/ \ / \

1i0i0i0i1 110
LSB: . . : :MSB:

> Time

Start bit Stop bit(s)
8-bit data

External Interface (cont’d)

e EIA-232 serial interface
— Low-speed serial transmission

— Adopted by Electronics
Industry Association (EIA)

e Popularly known by its
predecessor RS-232

— It uses a 9-pin connector DB-9

e Uses 8 signals

— Typically used to connect a
modem to a computer

Transmit DTE
data ready

Carrier | Receive
detect data

Signal
ground

DCE Clear
ready | to send

Request Ring
to send indicator

External Interface (cont’d)

 Transmission protocol uses three phases

— Connection setup
e Computer A asserts DTE Ready
— Transmits phone# via Transmit Data line (pin 2)
e Modem B alerts its computer via Ring Indicator (pin 9)
— Computer B asserts DTE Ready (pin 4)
— Modem B generates carrier and turns its DCE Ready
e Modem A detects the carrier signal from modem B
— Modem A alters its computer via Carrier Detect (pin 1)
— Turns its DCE Ready
— Data transmission

 Done by handshaking using
— request-to-send (RTS) and clear-to-send (CTS) signals

— Connection termination
* Done by deactivating RTS

External Interface (cont’d)

e Parallel printer interface

— A simple parallel interface
— Uses 25-pin DB-25

e 8 data signals
— Latched by strobe (pin 1)
e Data transfer uses simple handshaking
— Uses acknowledge (CK) signal
» After each byte, computer waits for ACK

e 5lines for printer status
— Busy, out-of-paper, online/offline, autofeed, and fault

e Can be initialized with INIT
— Clears the printer buffer and resets the printer

DMA Controller 8237

DMA Operation

DMA controller architecture

DMA transfer types and modes
DMA 8237 controller pin diagram
DMA 8237 controller block diagram

Direct memory access

e Direct Memory Access (DMA) allows devices to transfer data
without subjecting the processor a heavy overhead. Otherwise,
the processor would have to copy each piece of data from the
source to the destination. This is typically slower than copying
normal blocks of memory since access to I/O devices over a
peripheral bus is generally slower than normal system RAM.
During this time the processor would be unavailable for any
other tasks involving processor bus access. But it can continue
to work on any work which does not require bus access. DMA
transfers are essential for high performance embedded systems
where large chunks of data need to be transferred from the
Input/output devices to or from the primary memory.

DMA Controller

A DMA controller is a device, usually peripheral to a CPU that
IS programmed to perform a sequence of data transfers on
behalf of the CPU. A DMA controller can directly access
memory and Is used to transfer data from one memory location
to another, or from an 1/O device to memory and vice versa. A
DMA controller manages several DMA channels, each of
which can be programmed to perform a sequence of these
DMA transfers. Devices, usually 1/O peripherals, that acquire
data that must be read (or devices that must output data and be
written to) signal the DMA controller to perform a DMA
transfer by asserting a hardware DMA request (DRQ) signal.

A DMA request signal for each channel is routed to the DMA
controller. This signal is monitored and responded to in much
the same way that a processor handles interrupts. When the
DMA controller sees a DMA request, it responds by
performing one or many data transfers from that 1/O device
Into system memory or vice versa. Channels must be enabled
by the processor for the DMA controller to respond to DMA
requests. The number of transfers performed, transfer modes
used, and memory locations accessed depends on how the
DMA channel is programmed. A DMA controller typically
shares the system memory and I/O bus with the CPU and has
both bus master and slave capability.

Figure shows the DMA controller architecture and how the
DMA controller interacts with the CPU. In bus master mode,
the DMA controller acquires the system bus (address, data,
and control lines) from the CPU to perform the

DMA transfers. Because the CPU releases the system bus for
the duration of the transfer, the process is sometimes referred

to as cycle stealing.

In bus slave mode, the DMA controller is accessed by the
CPU, which programs the DMA controller's internal registers
to set up DMA transfers. The internal registers consist of
source and destination address registers and transfer count
registers for each DMA channel, as well as control and status
registers for initiating, monitoring, and sustaining the
operation of the DMA controller.

DMLA Controller

Enable/

Status Register

L

Dizable

MMask Register

DMWLA Channel

Base
Count

L]

TC

Count

I Curremnt

Base

I Address

—
Current
Address

D

13

DMNLA Axrbitration

L ogic

CPU

Base Request

Base Grant

-

r 3y

DACKX
DROX

N

TC

PC Bus

VAR

Fig. 16.1 The DMA controller architecture

During a DMA access the microprocessor is turned off by
placing a logic one on the HOLD input. After placing a logic
one on HOLD, the microprocessor issues a logic one on the
HLDA to indicate a hold is in effect.

During a HOLD, the microprocessor stops running the
program and it places its address, data, and control bus
connections at their impedance state.

This in effect is the same as removing the microprocessor from
Its socket!

While the microprocessor is held, other devices are free to gain
access to its memory and 1/O space to directly transfer data.

« HOLD has a higher priority than interrupts and HOLD
takes effect in a clock or two.

DMA Transfer Types and Modes

 DMA controllers vary as to the type of DMA transfers and the
number of DMA channels they support.

e The two types of DMA transfers are
1) Flyby DMA transfers
1) Fetch-and-deposit DMA transfers.

Flyby Transfer type

* The fastest DMA transfer type Is referred to as a single-cycle,
single-address, or flyby transfer. In a flyby DMA transfer, a
single bus operation is used to accomplish the transfer, with
data read from the source and written to the destination
simultaneously. In flyby operation, the device requesting
service asserts a DMA request on the appropriate channel
request line of the DMA controller. The DMA controller
responds by gaining control of the system bus from the CPU
and then issuing the pre-programmed memory address.
Simultaneously, the DMA controller sends a DMA
acknowledge signal to the requesting device.

« This signal alerts the requesting device to drive the data onto
the system data bus or to latch the data from the system bus,
depending on the direction of the transfer. In other words, a
flyby DMA transfer looks like a memory read or write cycle
with the DMA controller supplying the address and the 1/0
device reading or writing the data. Because flyby DMA
transfers involve a single memory cycle per data transfer, these
transfers are very efficient. Fig.16.2 shows the flyby DMA
transfer signal protocol.

(I/O Device) high for additional
DMA Acknowledge* _\—/— transfers.
(DMA Controller)
(DMA Controller)
Memory Write*
(DMA Controller) S
Address _< Memory Address >—

(DMA Controller)
I/O Device

Fig. 16.2 Flyby DMA transfer

Fetch-and-Deposit DMA transfer

o this type of transfer involves two memory or 1/O cycles. The
data being transferred is first read from the 1/O device or
memory Into a temporary data register internal to the DMA
controller. The data is then written to the memory or 1/O
device in the next cycle. Fig.16.3 shows the fetch-and-deposit
DMA transfer signal protocol. Although inefficient because the
DMA controller performs two cycles and thus retains the
system bus longer, this type of transfer is useful for interfacing
devices with different data bus sizes. For example, a DMA
controller can perform two 16-bit read operations from one
location followed by a 32-bit write operation to another
location.

A DMA controller supporting this type of transfer has two
address registers per channel (source address and destination
address) and bus-size registers, in addition to the usual transfer
count and control registers.

« Unlike the flyby operation, this type of DMA transfer is
suitable for both memory-to-memory and 1/O transfers.

« Single, block, and demand are the most common transfer
modes. Single transfer mode transfers one data value for each
DMA request assertion. This mode is the slowest method of
transfer because It requires the DMA controller to arbitrate for
the system bus with each transfer. This arbitration is not a
major problem on a lightly loaded bus, but it can lead to
latency problems when multiple devices are using the bus.

« Block and demand transfer modes increase system throughput
by allowing the DMA controller to perform multiple DMA
transfers when the DMA controller has gained the bus. For
block mode transfers, the DMA controller performs the entire
DMA sequence as specified by the transfer count register at
the fastest possible rate in response to a single DMA request
from the 1/O device. For demand mode transfers, the DMA
controller performs DMA transfers at the fastest possible rate
as long as the 1/0O device asserts its DMA request. When the
1/O device unasserts this DMA request, transfers are held off.

DMA modes

Demand mode
Till EOP or inactive DREQ

Single mode
Release hold after each byte transfer

Block mode

Transfer all bytes in count, DREQ not required tobe active
Cascade mode

More than one DMA

DMA Controller Operation

* For each channel, the DMA controller saves the
programmed address and count in the base registers
and maintains copies of the information in the current
address and current count registers, as shown in
Fig.16.1. Each DMA channel is enabled and disabled
via a DMA mask register. When DMA is started by
writing to the base registers and enabling the DMA
channel, the current registers are loaded from the base
registers. With each DMA transfer, the value in the
current address register iIs driven onto the address
bus, and the current address register is automatically
Incremented or decremented.

e The current count register determines the number of transfers
remaining and is automatically decremented after each
transfer. When the value in the current count register goes
from 0 to -1, a terminal count (TC) signal Is generated, which
signifies the completion of the DMA transfer sequence. This
termination event is referred to as reaching terminal count.
DMA controllers often generate a hardware TC pulse during
the last cycle of a DMA transfer sequence. This signal can be
monitored by the 1/O devices participating in the DMA
transfers. DMA controllers require reprogramming when a
DMA channel reaches TC. Thus, DMA controllers require
some CPU time, but far less than is required for the CPU to
service device 1/O interrupts.

 When a DMA channel reaches TC, the processor may need
to reprogram the controller for additional DMA transfers.
Some DMA controllers interrupt the processor whenever a
channel terminates. DMA controllers also have mechanisms
for automatically reprogramming a DMA channel when the
DMA transfer sequence completes. These mechanisms
Include auto initialization and buffer chaining. The auto
Initialization feature repeats the DMA transfer sequence by
reloading the DMA channel's current registers from the
base registers at the end of a DMA sequence and re-
enabling the channel. Buffer chaining is useful for
transferring blocks of data into noncontiguous buffer areas
or for handling double-buffered data acquisition. With
buffer chaining, a channel interrupts the CPU and is
programmed with the next address and count parameters

while DMA transfers are being performed on the current
buffer

e Some DMA controllers minimize CPU intervention further by
having a chain address register that points to a chain control
table in memory. The DMA controller then loads its own
channel parameters from memory. Generally, the more
sophisticated the DMA controller, the less servicing the CPU
has to perform.

A DMA controller has one or more status registers that are
read by the CPU to determine the state of each DMA channel.
The status register typically indicates whether a DMA request
IS asserted on a channel and whether a channel has reached
TC. Reading the status register often clears the terminal count
Information in the register, which leads to problems when
multiple programs are trying to use different DMA channels.

Steps in a Typical DMA cycle

Processor completes the current bus cycle and then asserts the
bus grant signal to the device.

The device then asserts the bus grant ack signal.

The processor senses in the change in the state of bus grant ack
signal and starts listening to the data and address bus for DMA
activity.

The DMA device performs the transfer from the source to
destination address.

During these transfers, the processor monitors the addresses on
the bus and checks if any location modified during DMA
operations is cached in the processor.

 |f the processor detects a cached address on the bus, it can
take one of the two actions:

— Processor invalidates the internal cache entry for the
address involved in DMA write operation

— Processor updates the internal cache when a DMA write
IS detected

e Once the DMA operations have been completed, the device
releases the bus by asserting the bus release signal.

» Processor acknowledges the bus release and resumes its bus
cycles from the point it left off.

8237 DMA Controller

IOW
MEMR
NENW
NC
READY
HIDA
ADSTB

RESET
DACK?2
DACKS3
DREQ3
DREQ2
DREQ1
DREQO

(GND) VSS

Figc. 16.4 The DMNMA pin-out

Functional Description

VCC: is the +5V power supply pin
GND Ground

CLK: CLOCK INPUT: The Clock Input is used to generate
the timing signals which control 82C37A operations.

CS: CHIP SELECT: Chip Select is an active low input used to
enable the controller onto the data bus for CPU
communications.

RESET: This is an active high input which clears the
Command, Status, Request, and Temporary registers, the
First/Last Flip-Flop, and the mode register counter. The Mask
register Is set to ignore requests. Following a Reset, the
controller is in an idle cycle.

READY:: This signal can be used to extend the memory read
and write pulses from the 82C37A to accommodate slow
memories or 1/O devices.

HLDA: HOLD ACKNOWLEDGE: The active high Hold
Acknowledge from the CPU indicates that it has relinquished
control of the system busses.

DREQO-DREQ3: DMA REQUEST: The DMA Request
(DREQ) lines are individual asynchronous channel request
Inputs used by peripheral circuits to obtain DMA service. In
Fixed Priority, DREQO has the highest priority and DREQ3
has the lowest priority. A request is generated by activating the
DREQ line of a channel. DACK will acknowledge the
recognition of a DREQ signal. Polarity of DREQ is
programmable. RESET initializes these lines to active high.
DREQ must be maintained until the corresponding DACK
goes active. DREQ will not be recognized while the clock is
stopped. Unused DREQ inputs should be pulled High or Low
(inactive) and the corresponding mask bit set.

DBO-DB7: DATA BUS: The Data Bus lines are
bidirectional three-state signals connected to the system
data bus. The outputs are enabled in the Program condition
during the 1/0O Read to output the contents of a register to
the CPU. The outputs are disabled and the inputs are read
during an I/O Write cycle when the CPU Is programming
the 82C37A control registers. During DMA cycles, the
most significant 8-bits of the address are output onto the
data bus to be strobed into an external latch by ADSTB. In
memory-to-memory operations, data from the memory
enters the 82C37A on the data bus during the read-from-
memory transfer, then during the write-to-memory transfer,
}he data bus outputs write the data Into the new memory
ocation.

IOR: READ: I/O Read is a bidirectional active low three-
state line. In the Idle cycle, it is an input control signal
used by the CPU to read the control registers. In the Active
cycle, it is an output control signal used by the 82C37A to
accesfs data from the peripheral during a DMA Write
transfer.

DBO-DB7: DATA BUS: The Data Bus lines are
bidirectional three-state signals connected to the system
data bus. The outputs are enabled in the Program
condition during the 1/0O Read to output the contents of a
register to the CPU. The outputs are disabled and the
Inputs are read during an 1/0O Write cycle when the CPU is
programming the 82C37A control reglsters. During DMA
cycles, the most significant 8-bits of the address are output
onto the data bus to be strobed into an external latch by
ADSTB. In memor -to-memor¥ operations, data from the
memory enters the 82C37A on the data bus during the
read-from-memory transfer, then during the write-to-
memory transfer, the data bus outputs write the data into
the new memory location.

IOR: READ: I/O Read is a bidirectional active low three-
state line. In the Idle cycle, it is an input control signal
used by the CPU to read the control registers. In the
Active cycle, it Is an output control signal used by the
82C37Ato access data from the peripheral during a DMA
Write transfer.

IOW: WRITE: I/O Write is a bidirectional active low three-
state line. In the Idle cycle, it is an input control signal used by
the CPU to load information into the 82C37A. In the Active
cycle, it is an output control signal used by the 82C37A to load
data to the peripheral during a DMA Read transfer.

EOP: END OF PROCESS: End of Process (EOP) Is an active
low bidirectional signal. Information concerning the
completion of DMA services is available at the bidirectional
EOP pin. The 82C37A allows an external signal to terminate
an active DMA service by pulling the EOP pin low. A pulse is
generated by the 82C37A when terminal count (TC) for any
channel is reached, except for channel 0 in memory-to-
memory mode. During memory-to-memory

o transfers, EOP will be output when the TC for channel 1
occurs. The EOP pin is driven by an open drain transistor on-
chip, and requires an external pull-up resistor to VCC. When
an EOP pulse occurs, whether internally or externally
generated, the 82C37A will terminate the service, and if auto-
Initialize is enabled, the base registers will be written to the
current registers of that channel. The mask bit and TC bit in
the status word will be set for the currently active channel by
EOP unless the channel is programmed for autoinitialize. In
that case, the mask bit remains clear.

 AO0-A3: ADDRESS: The four least significant address lines
are bidirectional three-state S|8nals. In the Idle cycle, they are
Inputs and are used by the 82C37A to address the contro
reg{lster to be loaded or read. In the Active cycle, they are
ou

puts and provide the lower 4-bits of the output address.

o A4-A7: ADDRESS: The four most significant address lines
are three-state outputs and provide 4-bits of address. These
lines are enabled only during the DMA service.

« HRQ: HOLD REQUEST: The Hold Request (HRQ) output
IS used to request control of the system bus. When a DREQ
occurs and the corresponding mask bit is clear, or a software
DMA request is made, the 82C37A issues HRQ. The HLDA
signal then informs the controller when access to the system
busses Is permitted. For stand-alone operation where the
82C37A always controls the busses, HRQ may be tied to
HLDA. This will result in one SO state before the transfer.

« DACKO0-DACK3: DMAACKNOWLEDGE: DMA
acknowledge iIs used to notify the individual peripherals
when one has been granted a DMA cycle. The sense of these
lines is programmable. RESET initializes them to active low.

« AEN: ADDRESS ENABLE: Address Enable enables the 8-bit
latch containing the upper 8 address bits onto the system
address bus. AEN can also be used to disable other system bus
drivers during DMA transfers. AEN is active high.

« ADSTB: ADDRESS STROBE: This is an active high signal
used to control latching of the upper address byte. It will drive
directly the strobe input of external transparent octal latches,
such as the 82C82. During block operations, ADSTB will only
be issued when the upper address byte must be updated, thus
speeding operation through elimination of S1 states. ADSTB
timing Is referenced to the falling edge of the 82C37A clock.

« MEMR: MEMORY READ: The Memory Read signal is an
active low three-state output used to access data from the
selected memory location during a DMA Read or a memory-
to-memory transfer.

« MEMW MEMORY WRITE: The Memory Write signal Is an
active low three-state output used to write data to the selected
memory location during a DMA Write or a memory-to-
memory transfer.

« NC: NO CONNECT: Pin 5 is open and should not be tested
for continuity.

ADSTB
MEMR

MEMW

+«—50 DECREMENTOR | | INCDECREMENTOR 10 m
— - $— BUFFER
TEMP WORD TEMP ADDRESS
—0 COUNT REG (16) REG (16)
—> 16-BIT BUS l
— TDMING
—l o _ 16.BIT BUS | — .
| contrOL READ BUFFER READ WRITE BUFFER ot [T)
«—0 BASE —rpxy | CURRENT
—a ADBI';'*I‘;’ES | worp ?ﬁ%ﬁ%g WORD
p = COUNT (16}“ COUNT ul
+—0 (16) (16) (16) <
+—0 “ COMMAND
CONTROL

{15

WRITE READ

BUFFER | | BUFFER D0-D1
7 _
—/—| PRIORITY | | [COMMAND —

ENCODER (8) INTERNAL DATA BUS BUFFER
—| AND |
ROTATING MASK
=1 priORITY)
«/—L_LOGIC .
| REQUEST <:>_ STATUS TEMPORARY
S MODE ®) (8)
4x6)

Fig. 16.5 The 8237 Architecture

Internal Registers

CAR: Current Address Register
16-bit for each channel

Auto Iincrement or decrement
CWCR:Current Word Count Register
Number loaded is one less than count
BA and BWC: base registers

Used in auto initialization mode

Reload the original values

DMA Command Register

3 2 1 D=—p8Bit Number

Memory-to memory disable
PMemory-to-memory enable

Channel 0 address hold disable
Channel O address hold enable
If bit 0 = O

Controller enable

Ccontroller disable

Mormal timing
Compressed timing
If bit O = 1

Fixed priority

L

—

=0 -0 X290 20

Haotating priority

Late write selection
Extended write selecticon

If bit 3 =1
DREQ sense active high

DREQ sense active low
DACK sense active low

/e — e -
40 =0 X400 an ¥

DACK sense active high

DMA Mode register

11

Channel O select
Channmnel 1 select
Channel 2 select
Channel 3 select

Verify transfor
Wrrite transfer
Head transfer
lHiegal

If bits 6 and 7 = 11

Autoinitialization disable
Autoinitialization enable

Address increment select
Address decrement select

Demand mode select
Single mode select
Block mode select
Cascade mode select

DMA Reguest Register

7 6 5 4 3 2 1 0<«<—Bit Number

! I i | E——

Don't Care 00 Select channel 0
01 Select channel 1
10 Select channel 2
[11 Select channel 3

[O Reset request bit
1 Set request bit

l_n-‘

Mask Set/Rest Register

76 5 43 2 1 0<«—Bit Number

[TT T L]
I__I__—l

Don't Care [00 Select channel 0 mask bit
01 Select channel 1 mask bit
10 Select channel 2 mask bit

| 11 Select channel 3 mask bit

0 Clear mask bit
1 Set mask bit

DMA Mask register

/7 6 5 4 3 2 1 0«—Bit Number

|
Don't Care

C Clear channel 0 mask bit
1 Set channel 0 mask bit

C Clear channel 1 mask bit
1 Set channel 1 mask bit

0 Clear channel 2 mask bit
1 Set chanrel 2 mask bit

0 Clear channel 3 mask bit
1 Set channel 3 mask bit

— l'-'l'_l/_l_‘r__F e

/f 65 43 2 1

Status Register

o

[TT1

S

— el ey ey

il el il e

0<=—Bit Number

Channel 0 has reached TC
Channel 1 has reached TC
Channel 2 has reached TC
Channel 3 has reached TC

Channel 0 request
Channel 1 request
Channel 2 request
Channel 3 request

